// Formatting library for C++ - range and tuple support // // Copyright (c) 2012 - present, Victor Zverovich and {fmt} contributors // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_RANGES_H_ #define FMT_RANGES_H_ #ifndef FMT_MODULE # include <initializer_list> # include <iterator> # include <string> # include <tuple> # include <type_traits> # include <utility> #endif #include "format.h" FMT_BEGIN_NAMESPACE FMT_EXPORT enum class range_format { disabled, map, set, sequence, string, debug_string }; namespace detail { template <typename T> class is_map { template <typename U> static auto check(U*) -> typename U::mapped_type; template <typename> static void check(...); public: static constexpr const bool value = !std::is_void<decltype(check<T>(nullptr))>::value; }; template <typename T> class is_set { template <typename U> static auto check(U*) -> typename U::key_type; template <typename> static void check(...); public: static constexpr const bool value = !std::is_void<decltype(check<T>(nullptr))>::value && !is_map<T>::value; }; // C array overload template <typename T, std::size_t N> auto range_begin(const T (&arr)[N]) -> const T* { return arr; } template <typename T, std::size_t N> auto range_end(const T (&arr)[N]) -> const T* { return arr + N; } template <typename T, typename Enable = void> struct has_member_fn_begin_end_t : std::false_type {}; template <typename T> struct has_member_fn_begin_end_t<T, void_t<decltype(*std::declval<T>().begin()), decltype(std::declval<T>().end())>> : std::true_type {}; // Member function overloads. template <typename T> auto range_begin(T&& rng) -> decltype(static_cast<T&&>(rng).begin()) { return static_cast<T&&>(rng).begin(); } template <typename T> auto range_end(T&& rng) -> decltype(static_cast<T&&>(rng).end()) { return static_cast<T&&>(rng).end(); } // ADL overloads. Only participate in overload resolution if member functions // are not found. template <typename T> auto range_begin(T&& rng) -> enable_if_t<!has_member_fn_begin_end_t<T&&>::value, decltype(begin(static_cast<T&&>(rng)))> { return begin(static_cast<T&&>(rng)); } template <typename T> auto range_end(T&& rng) -> enable_if_t<!has_member_fn_begin_end_t<T&&>::value, decltype(end(static_cast<T&&>(rng)))> { return end(static_cast<T&&>(rng)); } template <typename T, typename Enable = void> struct has_const_begin_end : std::false_type {}; template <typename T, typename Enable = void> struct has_mutable_begin_end : std::false_type {}; template <typename T> struct has_const_begin_end< T, void_t<decltype(*detail::range_begin( std::declval<const remove_cvref_t<T>&>())), decltype(detail::range_end( std::declval<const remove_cvref_t<T>&>()))>> : std::true_type {}; template <typename T> struct has_mutable_begin_end< T, void_t<decltype(*detail::range_begin(std::declval<T&>())), decltype(detail::range_end(std::declval<T&>())), // the extra int here is because older versions of MSVC don't // SFINAE properly unless there are distinct types int>> : std::true_type {}; template <typename T, typename _ = void> struct is_range_ : std::false_type {}; template <typename T> struct is_range_<T, void> : std::integral_constant<bool, (has_const_begin_end<T>::value || has_mutable_begin_end<T>::value)> {}; // tuple_size and tuple_element check. template <typename T> class is_tuple_like_ { template <typename U, typename V = typename std::remove_cv<U>::type> static auto check(U* p) -> decltype(std::tuple_size<V>::value, 0); template <typename> static void check(...); public: static constexpr const bool value = !std::is_void<decltype(check<T>(nullptr))>::value; }; // Check for integer_sequence #if defined(__cpp_lib_integer_sequence) || FMT_MSC_VERSION >= 1900 template <typename T, T... N> using integer_sequence = std::integer_sequence<T, N...>; template <size_t... N> using index_sequence = std::index_sequence<N...>; template <size_t N> using make_index_sequence = std::make_index_sequence<N>; #else template <typename T, T... N> struct integer_sequence { using value_type = T; static FMT_CONSTEXPR auto size() -> size_t { return sizeof...(N); } }; template <size_t... N> using index_sequence = integer_sequence<size_t, N...>; template <typename T, size_t N, T... Ns> struct make_integer_sequence : make_integer_sequence<T, N - 1, N - 1, Ns...> {}; template <typename T, T... Ns> struct make_integer_sequence<T, 0, Ns...> : integer_sequence<T, Ns...> {}; template <size_t N> using make_index_sequence = make_integer_sequence<size_t, N>; #endif template <typename T> using tuple_index_sequence = make_index_sequence<std::tuple_size<T>::value>; template <typename T, typename C, bool = is_tuple_like_<T>::value> class is_tuple_formattable_ { public: static constexpr const bool value = false; }; template <typename T, typename C> class is_tuple_formattable_<T, C, true> { template <size_t... Is> static auto all_true(index_sequence<Is...>, integer_sequence<bool, (Is >= 0)...>) -> std::true_type; static auto all_true(...) -> std::false_type; template <size_t... Is> static auto check(index_sequence<Is...>) -> decltype(all_true( index_sequence<Is...>{}, integer_sequence<bool, (is_formattable<typename std::tuple_element<Is, T>::type, C>::value)...>{})); public: static constexpr const bool value = decltype(check(tuple_index_sequence<T>{}))::value; }; template <typename Tuple, typename F, size_t... Is> FMT_CONSTEXPR void for_each(index_sequence<Is...>, Tuple&& t, F&& f) { using std::get; // Using a free function get<Is>(Tuple) now. const int unused[] = {0, ((void)f(get<Is>(t)), 0)...}; ignore_unused(unused); } template <typename Tuple, typename F> FMT_CONSTEXPR void for_each(Tuple&& t, F&& f) { for_each(tuple_index_sequence<remove_cvref_t<Tuple>>(), std::forward<Tuple>(t), std::forward<F>(f)); } template <typename Tuple1, typename Tuple2, typename F, size_t... Is> void for_each2(index_sequence<Is...>, Tuple1&& t1, Tuple2&& t2, F&& f) { using std::get; const int unused[] = {0, ((void)f(get<Is>(t1), get<Is>(t2)), 0)...}; ignore_unused(unused); } template <typename Tuple1, typename Tuple2, typename F> void for_each2(Tuple1&& t1, Tuple2&& t2, F&& f) { for_each2(tuple_index_sequence<remove_cvref_t<Tuple1>>(), std::forward<Tuple1>(t1), std::forward<Tuple2>(t2), std::forward<F>(f)); } namespace tuple { // Workaround a bug in MSVC 2019 (v140). template <typename Char, typename... T> using result_t = std::tuple<formatter<remove_cvref_t<T>, Char>...>; using std::get; template <typename Tuple, typename Char, std::size_t... Is> auto get_formatters(index_sequence<Is...>) -> result_t<Char, decltype(get<Is>(std::declval<Tuple>()))...>; } // namespace tuple #if FMT_MSC_VERSION && FMT_MSC_VERSION < 1920 // Older MSVC doesn't get the reference type correctly for arrays. template <typename R> struct range_reference_type_impl { using type = decltype(*detail::range_begin(std::declval<R&>())); }; template <typename T, std::size_t N> struct range_reference_type_impl<T[N]> { using type = T&; }; template <typename T> using range_reference_type = typename range_reference_type_impl<T>::type; #else template <typename Range> using range_reference_type = decltype(*detail::range_begin(std::declval<Range&>())); #endif // We don't use the Range's value_type for anything, but we do need the Range's // reference type, with cv-ref stripped. template <typename Range> using uncvref_type = remove_cvref_t<range_reference_type<Range>>; template <typename Formatter> FMT_CONSTEXPR auto maybe_set_debug_format(Formatter& f, bool set) -> decltype(f.set_debug_format(set)) { f.set_debug_format(set); } template <typename Formatter> FMT_CONSTEXPR void maybe_set_debug_format(Formatter&, ...) {} template <typename T> struct range_format_kind_ : std::integral_constant<range_format, std::is_same<uncvref_type<T>, T>::value ? range_format::disabled : is_map<T>::value ? range_format::map : is_set<T>::value ? range_format::set : range_format::sequence> {}; template <range_format K> using range_format_constant = std::integral_constant<range_format, K>; // These are not generic lambdas for compatibility with C++11. template <typename Char> struct parse_empty_specs { template <typename Formatter> FMT_CONSTEXPR void operator()(Formatter& f) { f.parse(ctx); detail::maybe_set_debug_format(f, true); } parse_context<Char>& ctx; }; template <typename FormatContext> struct format_tuple_element { using char_type = typename FormatContext::char_type; template <typename T> void operator()(const formatter<T, char_type>& f, const T& v) { if (i > 0) ctx.advance_to(detail::copy<char_type>(separator, ctx.out())); ctx.advance_to(f.format(v, ctx)); ++i; } int i; FormatContext& ctx; basic_string_view<char_type> separator; }; } // namespace detail template <typename T> struct is_tuple_like { static constexpr const bool value = detail::is_tuple_like_<T>::value && !detail::is_range_<T>::value; }; template <typename T, typename C> struct is_tuple_formattable { static constexpr const bool value = detail::is_tuple_formattable_<T, C>::value; }; template <typename Tuple, typename Char> struct formatter<Tuple, Char, enable_if_t<fmt::is_tuple_like<Tuple>::value && fmt::is_tuple_formattable<Tuple, Char>::value>> { private: decltype(detail::tuple::get_formatters<Tuple, Char>( detail::tuple_index_sequence<Tuple>())) formatters_; basic_string_view<Char> separator_ = detail::string_literal<Char, ',', ' '>{}; basic_string_view<Char> opening_bracket_ = detail::string_literal<Char, '('>{}; basic_string_view<Char> closing_bracket_ = detail::string_literal<Char, ')'>{}; public: FMT_CONSTEXPR formatter() {} FMT_CONSTEXPR void set_separator(basic_string_view<Char> sep) { separator_ = sep; } FMT_CONSTEXPR void set_brackets(basic_string_view<Char> open, basic_string_view<Char> close) { opening_bracket_ = open; closing_bracket_ = close; } FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* { auto it = ctx.begin(); auto end = ctx.end(); if (it != end && detail::to_ascii(*it) == 'n') { ++it; set_brackets({}, {}); set_separator({}); } if (it != end && *it != '}') report_error("invalid format specifier"); ctx.advance_to(it); detail::for_each(formatters_, detail::parse_empty_specs<Char>{ctx}); return it; } template <typename FormatContext> auto format(const Tuple& value, FormatContext& ctx) const -> decltype(ctx.out()) { ctx.advance_to(detail::copy<Char>(opening_bracket_, ctx.out())); detail::for_each2( formatters_, value, detail::format_tuple_element<FormatContext>{0, ctx, separator_}); return detail::copy<Char>(closing_bracket_, ctx.out()); } }; template <typename T, typename Char> struct is_range { static constexpr const bool value = detail::is_range_<T>::value && !detail::has_to_string_view<T>::value; }; namespace detail { template <typename Char, typename Element> using range_formatter_type = formatter<remove_cvref_t<Element>, Char>; template <typename R> using maybe_const_range = conditional_t<has_const_begin_end<R>::value, const R, R>; template <typename R, typename Char> struct is_formattable_delayed : is_formattable<uncvref_type<maybe_const_range<R>>, Char> {}; } // namespace detail template <typename...> struct conjunction : std::true_type {}; template <typename P> struct conjunction<P> : P {}; template <typename P1, typename... Pn> struct conjunction<P1, Pn...> : conditional_t<bool(P1::value), conjunction<Pn...>, P1> {}; template <typename T, typename Char, typename Enable = void> struct range_formatter; template <typename T, typename Char> struct range_formatter< T, Char, enable_if_t<conjunction<std::is_same<T, remove_cvref_t<T>>, is_formattable<T, Char>>::value>> { private: detail::range_formatter_type<Char, T> underlying_; basic_string_view<Char> separator_ = detail::string_literal<Char, ',', ' '>{}; basic_string_view<Char> opening_bracket_ = detail::string_literal<Char, '['>{}; basic_string_view<Char> closing_bracket_ = detail::string_literal<Char, ']'>{}; bool is_debug = false; template <typename Output, typename It, typename Sentinel, typename U = T, FMT_ENABLE_IF(std::is_same<U, Char>::value)> auto write_debug_string(Output& out, It it, Sentinel end) const -> Output { auto buf = basic_memory_buffer<Char>(); for (; it != end; ++it) buf.push_back(*it); auto specs = format_specs(); specs.set_type(presentation_type::debug); return detail::write<Char>( out, basic_string_view<Char>(buf.data(), buf.size()), specs); } template <typename Output, typename It, typename Sentinel, typename U = T, FMT_ENABLE_IF(!std::is_same<U, Char>::value)> auto write_debug_string(Output& out, It, Sentinel) const -> Output { return out; } public: FMT_CONSTEXPR range_formatter() {} FMT_CONSTEXPR auto underlying() -> detail::range_formatter_type<Char, T>& { return underlying_; } FMT_CONSTEXPR void set_separator(basic_string_view<Char> sep) { separator_ = sep; } FMT_CONSTEXPR void set_brackets(basic_string_view<Char> open, basic_string_view<Char> close) { opening_bracket_ = open; closing_bracket_ = close; } FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* { auto it = ctx.begin(); auto end = ctx.end(); detail::maybe_set_debug_format(underlying_, true); if (it == end) return underlying_.parse(ctx); switch (detail::to_ascii(*it)) { case 'n': set_brackets({}, {}); ++it; break; case '?': is_debug = true; set_brackets({}, {}); ++it; if (it == end || *it != 's') report_error("invalid format specifier"); FMT_FALLTHROUGH; case 's': if (!std::is_same<T, Char>::value) report_error("invalid format specifier"); if (!is_debug) { set_brackets(detail::string_literal<Char, '"'>{}, detail::string_literal<Char, '"'>{}); set_separator({}); detail::maybe_set_debug_format(underlying_, false); } ++it; return it; } if (it != end && *it != '}') { if (*it != ':') report_error("invalid format specifier"); detail::maybe_set_debug_format(underlying_, false); ++it; } ctx.advance_to(it); return underlying_.parse(ctx); } template <typename R, typename FormatContext> auto format(R&& range, FormatContext& ctx) const -> decltype(ctx.out()) { auto out = ctx.out(); auto it = detail::range_begin(range); auto end = detail::range_end(range); if (is_debug) return write_debug_string(out, std::move(it), end); out = detail::copy<Char>(opening_bracket_, out); int i = 0; for (; it != end; ++it) { if (i > 0) out = detail::copy<Char>(separator_, out); ctx.advance_to(out); auto&& item = *it; // Need an lvalue out = underlying_.format(item, ctx); ++i; } out = detail::copy<Char>(closing_bracket_, out); return out; } }; FMT_EXPORT template <typename T, typename Char, typename Enable = void> struct range_format_kind : conditional_t< is_range<T, Char>::value, detail::range_format_kind_<T>, std::integral_constant<range_format, range_format::disabled>> {}; template <typename R, typename Char> struct formatter< R, Char, enable_if_t<conjunction< bool_constant< range_format_kind<R, Char>::value != range_format::disabled && range_format_kind<R, Char>::value != range_format::map && range_format_kind<R, Char>::value != range_format::string && range_format_kind<R, Char>::value != range_format::debug_string>, detail::is_formattable_delayed<R, Char>>::value>> { private: using range_type = detail::maybe_const_range<R>; range_formatter<detail::uncvref_type<range_type>, Char> range_formatter_; public: using nonlocking = void; FMT_CONSTEXPR formatter() { if (detail::const_check(range_format_kind<R, Char>::value != range_format::set)) return; range_formatter_.set_brackets(detail::string_literal<Char, '{'>{}, detail::string_literal<Char, '}'>{}); } FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* { return range_formatter_.parse(ctx); } template <typename FormatContext> auto format(range_type& range, FormatContext& ctx) const -> decltype(ctx.out()) { return range_formatter_.format(range, ctx); } }; // A map formatter. template <typename R, typename Char> struct formatter< R, Char, enable_if_t<range_format_kind<R, Char>::value == range_format::map>> { private: using map_type = detail::maybe_const_range<R>; using element_type = detail::uncvref_type<map_type>; decltype(detail::tuple::get_formatters<element_type, Char>( detail::tuple_index_sequence<element_type>())) formatters_; bool no_delimiters_ = false; public: FMT_CONSTEXPR formatter() {} FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* { auto it = ctx.begin(); auto end = ctx.end(); if (it != end) { if (detail::to_ascii(*it) == 'n') { no_delimiters_ = true; ++it; } if (it != end && *it != '}') { if (*it != ':') report_error("invalid format specifier"); ++it; } ctx.advance_to(it); } detail::for_each(formatters_, detail::parse_empty_specs<Char>{ctx}); return it; } template <typename FormatContext> auto format(map_type& map, FormatContext& ctx) const -> decltype(ctx.out()) { auto out = ctx.out(); basic_string_view<Char> open = detail::string_literal<Char, '{'>{}; if (!no_delimiters_) out = detail::copy<Char>(open, out); int i = 0; basic_string_view<Char> sep = detail::string_literal<Char, ',', ' '>{}; for (auto&& value : map) { if (i > 0) out = detail::copy<Char>(sep, out); ctx.advance_to(out); detail::for_each2(formatters_, value, detail::format_tuple_element<FormatContext>{ 0, ctx, detail::string_literal<Char, ':', ' '>{}}); ++i; } basic_string_view<Char> close = detail::string_literal<Char, '}'>{}; if (!no_delimiters_) out = detail::copy<Char>(close, out); return out; } }; // A (debug_)string formatter. template <typename R, typename Char> struct formatter< R, Char, enable_if_t<range_format_kind<R, Char>::value == range_format::string || range_format_kind<R, Char>::value == range_format::debug_string>> { private: using range_type = detail::maybe_const_range<R>; using string_type = conditional_t<std::is_constructible< detail::std_string_view<Char>, decltype(detail::range_begin(std::declval<R>())), decltype(detail::range_end(std::declval<R>()))>::value, detail::std_string_view<Char>, std::basic_string<Char>>; formatter<string_type, Char> underlying_; public: FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* { return underlying_.parse(ctx); } template <typename FormatContext> auto format(range_type& range, FormatContext& ctx) const -> decltype(ctx.out()) { auto out = ctx.out(); if (detail::const_check(range_format_kind<R, Char>::value == range_format::debug_string)) *out++ = '"'; out = underlying_.format( string_type{detail::range_begin(range), detail::range_end(range)}, ctx); if (detail::const_check(range_format_kind<R, Char>::value == range_format::debug_string)) *out++ = '"'; return out; } }; template <typename It, typename Sentinel, typename Char = char> struct join_view : detail::view { It begin; Sentinel end; basic_string_view<Char> sep; join_view(It b, Sentinel e, basic_string_view<Char> s) : begin(std::move(b)), end(e), sep(s) {} }; template <typename It, typename Sentinel, typename Char> struct formatter<join_view<It, Sentinel, Char>, Char> { private: using value_type = #ifdef __cpp_lib_ranges std::iter_value_t<It>; #else typename std::iterator_traits<It>::value_type; #endif formatter<remove_cvref_t<value_type>, Char> value_formatter_; using view = conditional_t<std::is_copy_constructible<It>::value, const join_view<It, Sentinel, Char>, join_view<It, Sentinel, Char>>; public: using nonlocking = void; FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* { return value_formatter_.parse(ctx); } template <typename FormatContext> auto format(view& value, FormatContext& ctx) const -> decltype(ctx.out()) { using iter = conditional_t<std::is_copy_constructible<view>::value, It, It&>; iter it = value.begin; auto out = ctx.out(); if (it == value.end) return out; out = value_formatter_.format(*it, ctx); ++it; while (it != value.end) { out = detail::copy<Char>(value.sep.begin(), value.sep.end(), out); ctx.advance_to(out); out = value_formatter_.format(*it, ctx); ++it; } return out; } }; template <typename Char, typename Tuple> struct tuple_join_view : detail::view { const Tuple& tuple; basic_string_view<Char> sep; tuple_join_view(const Tuple& t, basic_string_view<Char> s) : tuple(t), sep{s} {} }; // Define FMT_TUPLE_JOIN_SPECIFIERS to enable experimental format specifiers // support in tuple_join. It is disabled by default because of issues with // the dynamic width and precision. #ifndef FMT_TUPLE_JOIN_SPECIFIERS # define FMT_TUPLE_JOIN_SPECIFIERS 0 #endif template <typename Char, typename Tuple> struct formatter<tuple_join_view<Char, Tuple>, Char, enable_if_t<is_tuple_like<Tuple>::value>> { FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* { return do_parse(ctx, std::tuple_size<Tuple>()); } template <typename FormatContext> auto format(const tuple_join_view<Char, Tuple>& value, FormatContext& ctx) const -> typename FormatContext::iterator { return do_format(value, ctx, std::tuple_size<Tuple>()); } private: decltype(detail::tuple::get_formatters<Tuple, Char>( detail::tuple_index_sequence<Tuple>())) formatters_; FMT_CONSTEXPR auto do_parse(parse_context<Char>& ctx, std::integral_constant<size_t, 0>) -> const Char* { return ctx.begin(); } template <size_t N> FMT_CONSTEXPR auto do_parse(parse_context<Char>& ctx, std::integral_constant<size_t, N>) -> const Char* { auto end = ctx.begin(); #if FMT_TUPLE_JOIN_SPECIFIERS end = std::get<std::tuple_size<Tuple>::value - N>(formatters_).parse(ctx); if (N > 1) { auto end1 = do_parse(ctx, std::integral_constant<size_t, N - 1>()); if (end != end1) report_error("incompatible format specs for tuple elements"); } #endif return end; } template <typename FormatContext> auto do_format(const tuple_join_view<Char, Tuple>&, FormatContext& ctx, std::integral_constant<size_t, 0>) const -> typename FormatContext::iterator { return ctx.out(); } template <typename FormatContext, size_t N> auto do_format(const tuple_join_view<Char, Tuple>& value, FormatContext& ctx, std::integral_constant<size_t, N>) const -> typename FormatContext::iterator { using std::get; auto out = std::get<std::tuple_size<Tuple>::value - N>(formatters_) .format(get<std::tuple_size<Tuple>::value - N>(value.tuple), ctx); if (N <= 1) return out; out = detail::copy<Char>(value.sep, out); ctx.advance_to(out); return do_format(value, ctx, std::integral_constant<size_t, N - 1>()); } }; namespace detail { // Check if T has an interface like a container adaptor (e.g. std::stack, // std::queue, std::priority_queue). template <typename T> class is_container_adaptor_like { template <typename U> static auto check(U* p) -> typename U::container_type; template <typename> static void check(...); public: static constexpr const bool value = !std::is_void<decltype(check<T>(nullptr))>::value; }; template <typename Container> struct all { const Container& c; auto begin() const -> typename Container::const_iterator { return c.begin(); } auto end() const -> typename Container::const_iterator { return c.end(); } }; } // namespace detail template <typename T, typename Char> struct formatter< T, Char, enable_if_t<conjunction<detail::is_container_adaptor_like<T>, bool_constant<range_format_kind<T, Char>::value == range_format::disabled>>::value>> : formatter<detail::all<typename T::container_type>, Char> { using all = detail::all<typename T::container_type>; template <typename FormatContext> auto format(const T& t, FormatContext& ctx) const -> decltype(ctx.out()) { struct getter : T { static auto get(const T& t) -> all { return {t.*(&getter::c)}; // Access c through the derived class. } }; return formatter<all>::format(getter::get(t), ctx); } }; FMT_BEGIN_EXPORT /// Returns a view that formats the iterator range `[begin, end)` with elements /// separated by `sep`. template <typename It, typename Sentinel> auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> { return {std::move(begin), end, sep}; } /** * Returns a view that formats `range` with elements separated by `sep`. * * **Example**: * * auto v = std::vector<int>{1, 2, 3}; * fmt::print("{}", fmt::join(v, ", ")); * // Output: 1, 2, 3 * * `fmt::join` applies passed format specifiers to the range elements: * * fmt::print("{:02}", fmt::join(v, ", ")); * // Output: 01, 02, 03 */ template <typename Range, FMT_ENABLE_IF(!is_tuple_like<Range>::value)> auto join(Range&& r, string_view sep) -> join_view<decltype(detail::range_begin(r)), decltype(detail::range_end(r))> { return {detail::range_begin(r), detail::range_end(r), sep}; } /** * Returns an object that formats `std::tuple` with elements separated by `sep`. * * **Example**: * * auto t = std::tuple<int, char>{1, 'a'}; * fmt::print("{}", fmt::join(t, ", ")); * // Output: 1, a */ template <typename Tuple, FMT_ENABLE_IF(is_tuple_like<Tuple>::value)> FMT_CONSTEXPR auto join(const Tuple& tuple, string_view sep) -> tuple_join_view<char, Tuple> { return {tuple, sep}; } /** * Returns an object that formats `std::initializer_list` with elements * separated by `sep`. * * **Example**: * * fmt::print("{}", fmt::join({1, 2, 3}, ", ")); * // Output: "1, 2, 3" */ template <typename T> auto join(std::initializer_list<T> list, string_view sep) -> join_view<const T*, const T*> { return join(std::begin(list), std::end(list), sep); } FMT_END_EXPORT FMT_END_NAMESPACE #endif // FMT_RANGES_H_